首页 > 教学资源

小学数学六年级《比例的应用》教案精品多篇

时间:2025-06-29 07:11:51
小学数学六年级《比例的应用》教案精品多篇(全文共6817字)

[寄语]小学数学六年级《比例的应用》教案精品多篇为的会员投稿推荐,但愿对你的学习工作带来帮助。

小学数学六年级《比例的应用》教案 篇一

教学内容:

课本第63页例2;练一练;《作业本》第28页。

教学目标:

进一步理解按比例分配的意义,巩固解答按比例分配的基本方法,并能应用按比例分配解决简单的实际问题。

教学重点:

在连比中按比例分配应用题的特征与解答方法

教学难点:

理解连比(三部分比)的意义与分数应用题的关系

教学关键:

理解连比(三部分比)的意义

教学过程:

一、基本练习:

1、你可以想到什么?

(1)某班男、女生人数比是5∶4;

(2)柳树、杨树棵数比是1∶6;

(3)科技书和故事书比是5∶4。

2、练习:

(1)学校有故事书80本,故事书和科技书的本数之比是2∶3,科技书有多少本?

(2)改编1题中的故事书80本为科技书有80本。

分析:每题有多种不同的解法,想想你能列出几种不同的解法?

二、新授

1、出示例2:一种混凝土,由水泥、沙子和石子按2∶3∶5拌制而成。要配制这种混凝土6000千克,需要水泥、沙子和石子各多少千克?

(1)想:2∶3∶5叫做水泥、沙子和石子这三种量的连比。意思是这种混凝土里水泥占2份,沙子占3份,石子占5份。

(2)学生尝试解答。

(3)反馈、讲评。

2、试一试:一种青铜,内含铜88份,锡10份,锌2份。要炼制这种青铜400吨,需要铜、锡、锌各多少吨?

3、补充:一个长方体的棱长总和是24厘米,长、宽、高的比是3∶2∶1,这个长方体的`体积是多少?

三、练一练。P64。

四、课堂小结。

这堂课与上堂课有什么不同吗?你学会了什么?

五、《作业本》第28页。

小学数学六年级《比例的应用》教案 篇二

教学内容

苏教版九年义务教育六年制小学教材第十二册P35~38。

教学目标

(一)知识教学点

感受并理解比例尺的意义,会计算图上距离和实际距离,并能解决相关的实际问题。

(二)能力训练点

①培养学生发现问题、分析问题、解决问题能力;

②在实际应用中感受数学、亲近数学,培养学生学习数学的兴趣;

③辩证唯物主义的初步渗透

教学重点

比例尺的应用。

教学难点

比例尺的实际意义。

教学过程

一、设置教学情境,感受比例尺

(一)画画比比

1、估计黑板的长和宽:教室前的这块黑板同学们熟悉吗?

请你估计一下黑板的长和宽。

2、丈量黑板的长和宽:(板书:黑板实际长3.5米,宽1.5米)

3、画黑板:你能照样子把黑板画在本子上吗?(师巡视)

4、质疑:这么大的黑板,为什么能画在这么小的一张纸上呢?(长和宽按一定的比例缩小了。)

5、挑两个黑板图(一个画得不像一个画得较像)出示:

a)评价:①谁画得更像一点?

②分析图A画得不像原因可能是什么?(长和宽缩小的比例不一样。)

b)师生合作,算一下长和宽分别缩小了多少倍?得数保留整数。(屏幕显示)

图上长7厘米,长缩小:350÷7=50图上长5厘米,长缩小:350÷5=70

宽1.5厘米,宽缩小:150÷1.5=100宽2.5厘米,宽缩小:150÷2.5=60

c)点拨:从上面计算结果来看图A长和宽缩小的比例差距较大(即比例失调),所以看上去画得不像;而图B长和宽缩小的比例接近,所以看上去画得较像。

(二)再画再比

1、想一想怎样画得更像?(长和宽缩小的比例要保持相同。)

2、课件展示准确的平面图:

3、请你帮老师算算长和宽分别缩小多少倍?

图上长3.5厘米缩小:350÷3.5=100宽1.5厘米缩小:150÷1.5=100

4、小结:当长和宽缩小的倍数相同时,黑板的平面图就十分逼真!由此可见,为了能反映真实的情况,画图时必须要有个统一的标准,这个统一的标准就是比例尺。(板书:比例尺)

二、结合实际,理解比例尺

(一)说一说

①讲授:课件中的长方形是按缩小100倍来画的,我们就说这幅图的比例尺是1﹕100。

②谁来说说比例尺1﹕100表示什么?(图上距离是实际距离的一百分之一;实际距离是图上距离的一百倍;图上距离1厘米表示实际距离100厘米等等)。

③图A、图B长和宽比例尺各是多少?分别表示什么?

小结:一幅图一般只有一个比例尺,当长和宽的比例尺不一样时,所画黑板就会失真。

④用自己话说说什么叫做比例尺?怎样计算比例尺?

小结:图上距离与实际距离的比叫做比例尺;比例尺通常写成前项是1的比。

(二)算一算

①下图是我校附近的平面图(屏幕同时显示),新华五村菜场距我校直线距离约300米,可在这幅图上只画了3厘米,这幅图的比例尺是多少?

评讲:你是如何算得?结果是多少?(1﹕10000)要注意些什么?

②从1﹕10000这一比例尺上,你能获取那些信息?

板书:图上距离是实际距离的一万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等。

三、联系实际,应用比例尺

(一)求图上距离

1、还是在这幅图上,现在要标上区委,估计一下我校离区委直线距离有多远?(400米)你看在这幅图上要画多长?

①独立思考,试试看,如感觉有困难小组内小声讨论。

②评讲:你是怎么想的?还可以怎么算?你觉得要注意些什么?

方法一:400米=40000厘米方法二:400米=40000厘米

40000÷10000=4(厘米)40000×1/10000=4(厘米)

方法三:10000厘米=100米方法四:用比例解(略)等等

400÷100=4(厘米)

小结:求图上距离可以用乘法计算,也可以用除法计算,关键是理解的角度不一样。

③如何画?自己画画看。(按上北下南左西右东常规去画,注意方向。)

2、练一练:

区委东北是我区闹市区 ……此处隐藏2295个字……的等式正确运用比例知识解答应用题

教学难点:

学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。

教学过程:

一、旧知铺垫

1.下面各题两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从甲地到乙地,行驶的速度和时间。

(3)每块地砖的面积一定,所需地砖的块数和所铺面积。

(4)书的总本数一定,每包的本数和包装的包数。

过程要求

①说一说两种量的变化情况。

②判断成什么比例。

③写出关系式。

2.根据题意用等式表示。

(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。

(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。

二、创设情境引入内容

1.出示例5

画面上张大妈与李奶奶的对话让我们知道了哪些数据?你能提出什么问题?

学生回答后引出求水费的实际问题。

你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的方法。

引入:这样的问题可以用应用比例的知识来解答,我们今天就来学习用比例的知识进行解答。

出示以下问题让学生思考和讨论

①问题中有哪两种量?

②它们成什么比例关系?你是根据什么判断的?

③根据这样的比例关系,你能列出等式吗?

明确

因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

学生讨论交流

演示解题过程:设未知数,根据正比例的意义列出方程,接着解比例求出未知数。让学生检验所求的未知数x是否合乎题意。检验的方法是把求出的数代入原等式(即方程),看等式是否成立。把求出的16代入等式,左式==1.6,右式==1.6,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

问题:王大爷家上个月的水费是19.2元,他们家上个月用多少吨水?

要求学生应用比例的知识解答,然后交流。通过订正、交流,使学生明确条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了。

2.出示例题6的场景。

同样先让学生用已学过的方法解答,然后学习用比例的知识解答。

师:想一想,如果改变题目的条件和问题该怎样解答?

出示以下问题让学生思考和讨论

①问题中有哪两种量?

②它们成什么比例关系?你是根据什么判断的?

③根据这样的比例关系,你能列出等式吗?

注意启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例关系的问题的方法。

让学生演示解题过程,集体修正。

3.完成做一做,直接让学生用比例的知识解答

问题:对照两题说一说两道题数量关系有什么不同,是怎样列式解答的。

总结应用比例知识解答问题的步骤

(1)分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例。

(2)依据正比例或反比例意义列出方程。

(3)解方程(求解后检验),写答。

小学数学六年级《比例的应用》教案 篇七

教学目标:

1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题

2、能根据实际问题中的条件确定反比例函数的解析式。

3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。

教学重点、难点:

重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题

难点:根据实际问题中的条件确定反比例函数的解析式

教学过程:

一、情景创设:

为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量(g)与时间x(in)成正比例。药物燃烧后,与x成反比例(如图所示),现测得药物8in燃毕,此时室内空气中每立方米的含药量为6g,请根据题中所提供的信息,解答下列问题:

(1)药物燃烧时,关于x的函数关系式为:________,自变量x的取值范围是:_______,药物燃烧后关于x的函数关系式为_______。

(2)研究表明,当空气中每立方米的含药量低于1.6g时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;

(3)研究表明,当空气中每立方米的含药量不低于3g且持续时间不低于10in时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

二、新授:

例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。

(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?

(2)录入文字的速度v(字/in)与完成录入的时间t(in)有怎样的函数关系?

(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?

例2某自来水公司计划新建一个容积为的长方形蓄水池。

(1)蓄水池的底部S与其深度有怎样的函数关系?

(2)如果蓄水池的深度设计为5,那么蓄水池的底面积应为多少平方米?

(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100和60,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)

三、课堂练习

1、一定质量的氧气,它的密度(g/3)是它的体积V(3)的反比例函数,当V=103时,=1.43g/3.(1)求与V的函数关系式;(2)求当V=23时求氧气的密度。

2、某地上年度电价为0.8元&nt;/&nt;度,年用电量为1亿度。本年度计划将电价调至0.55元至0.75元之间。经测算,若电价调至x元,则本年度新增用电量(亿度)与(x-0.4)(元)成反比例,当x=0.65时,=-0.8.

( ww www. w. 1)求与x之间的函数关系式;

(2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?[收益=(实际电价-成本价)×(用电量)]

3、如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=。求与x之间的函数关系式及自变量x的取值范围。

四、小结

五、作业

30.3——1、2、3

你也可以在搜索更多本站小编为你整理的其他小学数学六年级《比例的应用》教案精品多篇范文。

《小学数学六年级《比例的应用》教案精品多篇(全文共6817字).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式